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The Mathematics of the Models of Reference 
 
 
 
 
 
 
Intro: The Notion of MoR 
 
Artificial Intelligence (AI) is the idea that the fuzzy aggregate of abilities we collectively call 
“intelligence” can be realized artificially – specifically, as an algorithm. It’s no surprise, then, 
that AI faces two historical difficulties: (1) how to build an information processing device to 
implement such a conjectured algorithm; (2) how to fine-tune that fuzzy notion: 
intelligence. Nowadays’ computers only capture in a rough way some aspects of that notion 
– typically, the “non-logical”, analogical, associative, and contextual. But ordinary computing 
machines sometimes don’t do well also when they play at home, in the fields of logic and 
mathematics (think about factoring large integers and non-polynomial problems). 
To address the two problems, the iLabs research laboratory focuses, respectively, on two 
basic ideas: (1) a theoretical isomorphism between physical and informational reality; and 
(2) an extensive formal development of the notion of model of reference (MoR). Such a 
formal development is the mathematics of the models of reference. 
 
As for (1): at iLabs, we believe information to be rooted in physical reality from its very 
bottom. We believe that what goes on in the world can be tersely, but correctly, described 
by claiming: what the universe does at any instant of time is a computation its overall state 
at the following instant. Therefore, Artificial Intelligence is not that artificial: the good 
information processing devices are out there! And this is so, because universal computation 
is embedded in the ultimate essence of reality. 
 
As for (2): formally, a model of reference (MoR) is an ordered triple <perception, thought, 

action>. Using a standard operational notion, f: A  B is a MoR defined on a set A of 
perceptions, whose proper thought consists in effectively mapping them to actions or 
outputs in a set B. Thus, we can write: 
 
f(x1, x2, …, xn) = y 
 

with x1, x2, … , xn  A, and y  B. At the bottom of reality, a MoR works as a simple change in 
the informational patterns of the smallest physical items constituting our world (more on 
this soon). At the human level, it is what explains our behaviour in terms of how we perceive 
and elaborate information. Generalizing: models of reference (MsoR) are fractal items 
displaying isomorphic structure at any level of reality. Thus, they are our most promising 
candidate to the theoretical role of functional interface between matter and computation. 
You can read this page because the relevant MsoR are activated in your eye, in order for it 
to process visual stimuli and send certain signals to the area of your brain taking care of 
vision. A frog can grab a fly by activating several hundreds of MsoR. Dually, we are phobic, 
or sick, or develop cancer, because our mind, our body, our cells, activate the “wrong” 
MsoR. Arithmetic operations, business software, or the proof of a theorem in universal  
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algebra, are MsoR as well. What follows is an overview of the results spelled out with the 
due formal details in the [forthcoming] iLabs book, where the theoretical options to be 
exposed are also philosophically defended. 
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1. A Discrete Universe 
 
How is a universe in which matter and information are two sides of the same coin to be 
conceived? Here’s the iLabs proposal. The universe (call it U) has to be discrete and finite, to 
begin with, with minimal space-time units at its bottom (how minimal? 10-35 m for the 
minimal space unit, and 10-44 seconds for the minimal time unit, might be good guesses, but 
the exact sizes are irrelevant).  
 
We call these atoms cells. We expect the space to be entirely occupied by morphologically 
identical cells. So there exists a finite number w of cells, that is, of minimal space-time units. 
Likewise, time is divided into discrete minimal units, the instants: t0, t1, ... (speaking 
algebraically: time is a discrete linear order). Our intuitive, everyday Euclidean space is 
three-dimensional. But a discrete universe can be shaped for computational purposes in 1, 
2, 3, ..., n-dimensional spaces. To model our universe, we have chosen a two-dimensional, 
hexagonal grid (but our results can be obtained 
also by implementing our MsoR in a more 
traditional grid of squares, and in a three-
dimensional environment with the three-
dimensional analogue of hexagon: rhombic 
dodecahedron). 
 
Hexagon and rhombic dodecahedron have 
various topological advantages in the 
representation of physical movement – 
specifically, the distance between cells can be 
approximated in terms of radius: 
 
 
 

Fig. 1: rhombic dodecahedron 
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Once a spatial basis has been fixed, each cell in a bi-dimensional frame is univocally 
individuated as a point in a lattice by an ordered couple of integers, <i, j>. Next, at each 

instant t, each cell, <i, j> instantiates exactly one state   , with  a finite set of states of 

cardinality= k. Let “i, j, t” denote the state of cell <i, j> at time t.  
 
This is our strictly conventionalist perspective: first, we believe that the huge variety of 
worldly objects with their properties, qualities, and features surrounding us emerges as a 
high-level by-product of these simple ingredients: atomic cells and their few basic states. 
Second, anything whatsoever is ultimately an aggregate of cells. Call system any such 
aggregate. Then any system is just as legitimate as any other, our ordinary objects being just 
the aggregates that match with our ways of carving reality – and these depend on our 
cognitive apparatus, our learning capacities, and our practical interests. 
 
The universe does not work randomly: rules determine how each point in the lattice 
updates its state. We don’t know what the basic rules are, but we know for sure that they 
have to be models of reference: deterministic sequences of inputs, elaborations, and 
outputs. Next, our bet is that, at the bottom, rules must be few and simple: complexity and 
variety should emerge at higher levels, and depend upon the underlying simplicity: simplex 
sigillum veri. 
 
There are no mysterious “actions at a distance” in the universe, but just local interactions: 
each point <i, j> interacts only with the six adjacent cells, called its neighbourhood: 
 
 
 
 
 
 
 

… 

… 

… 

… 

Fig. 2: hexagonal grid 
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Let us label “*i, j+” point <i, j>’s neighborhood. Then, some deterministic dynamic MoR-rule 
governs the atoms – and thus, the world: at each instanct t, each point <i, j> synchronically 

updates its state with respect to instant t-1, following the unique MoR , such that 

for each , <i, j>, and t: 
 

i, j, t+1 = (i, j], t) 
 

Our world hosts a globally finite amount of information: given = k and a number w of 
points in the lattice, we have at most kw global configurations for U. Therefore, the entire 

evolution of our universe U is a finite global transition graph, G - the graph of the global 

transition function (with   the phase space or set of global configurations of U) 

induced by the MoR . 
 
 
2. The iLabs World 
 
2.1. Perfect Reversibility for Hi-Tech Computation  
 
The dynamical laws of physics are reversible at micro-level: distinct initial states in a 
microphysical system always lead to distinct final states. It is likely that any formal model 
aiming at capturing computations that actually go on down there, at the bottom of reality, 
must host a reversible dynamics. 
 
On the other hand, irreversible computation is an impractical waste of energy. An AND gate 
gives us 0 as its output at t+1. What was the input at t? 0 and 1, or vice versa, or two zeros? 

As von Neumann already conjectured, this informational entropy costs ~3  10-21 joules per 
elementary computational step at room temperature. The loss of information has a 
thermodynamic cost, to be paid in terms of a loss of non-computational energy. This does 
not depend on inefficient circuit design: it follows directly from the existence of irreversible 
calculation. As technology advances, this informational entropy problem is to put pressure 
on us: we may need reversible computing devices sooner than we thought. 
 
iLabs have developed a  mathematical model (a finite state cellular automaton) displaying a 
perfectly reversible dynamics and capable of conserving the totality of the information 
stored at the beginning of the universe. Next, we have effectively proved that our 
automaton is capable of universal computation: our discrete, computational universe can 
host universal Turing machines, capable of computing (given Turing’s Thesis) anything which 

i, j 
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Fig. 3: a cell and its neighbourhood 
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can be computed. This hinges on each single cell of our universe’s being capable of 
instantiating a single MoR as a computational primitive. Our model is thus a good candidate 
for the realization of high performance computational devices: systems capable of hosting 
logical circuits that perform computations with internal energy dissipation virtually close to 
zero. 
 
 
2.2. The iLabs Rule 
 
Each point of the lattice of the iLabs model instantiates states wich are sextuples of bits in 
the set {1, 0}. Intuitively, think of them as implemented in the sides of an hexagonal cell: 
 
 
 
 
 
 
 
 
 

Each side gets value 1 (“active”) or 0 (“inactive”) at each point of time: <i, j> at t has state  i, 

j, t = <x1, x2, x3, x4, x5, x6>, x1 corresponding to side 1, x2 to side 2, etc., each x having value v  

V = {1, 0}. Since V= 2, = 64: each cell has 26 = 64 possible states.  

The neighbourhood [i, j] of point  <i, j> is fixed by the value v  V of the six adjacent sides: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Still intuitively: think of each atom or cell as perceiving (input) the output exhibited by the 
neighbourhood, and acting (output) by exposing the result of its processing, as fixed by the 

following  MoR1, 0}6
{1, 0}6 , which is but a conditional routing of signals: 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
3 4 

1 

2 5 

6 

 

 

 

 
1 

2 5 

6 

4 3 

Fig. 4: the six sides of a cell instantiating a sextuple 

Fig. 5: the neighbours’ adjacent sides  
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  Perm([i, j], t), if ∑v[i, j],t (mod 2) = 1 
 

i, j, t+1 =  
 

  Id([i, j], t) otherwise 
 
 

“∑v[i, j],t (mod 2)” being the sum modulo 2 of the v  {1, 0} of each member of the input 

sextuple at t. Id is just identity, mapping each sextuple   to itself:  
 
Id(<x1, x2, x3, x4, x5, x6>) = <x1, x2, x3, x4, x5, x6>.   
 

Perm is a permutation on  that is, an operator  exchanging the first three items with 
the last three ones:  
 
Perm(<x1, x2, x3, x4, x5, x6>) = <x4, x5, x6, x1, x2, x3>.  
 
An odd number of 1s in the input sextuple gives their permutation as an output: any 
incoming signal is transmitted by point <i, j> to its opposite side (this is just aid to intuition: 
the cell’s “sides” are encoded in the computation). An even number of 1s turns on Id, and 
the effect is a kickback: signals (still speaking intuitively) have to go back where they came 
from. 
 

 is an (albeit peculiar) outer-totalistic cellular automaton rule, securing a total conservation 
of the amount of “active” and “inactive” bits the universe starts with: since Perm and 
(trivially) Id are permutations, the output of any input sextuple will retain the number of 0s 
and 1s in the input.  
 

Furthermore,  is a reversible rule: each input or perception is mapped by the two sub-rules 

of , Id and Perm, to a distinct output or action. So there exists an inverse MoR, -1, mapping 

’s outputs to the respective inputs.  
 

But  is also strongly reversible, that is, -1 = . For  is time-reversal invariant: it is mapped 

to -1 by the time-reversing transformation: t  –t. This means that at any point in time t, 
we can recover any state of the universe U at t-n (up to the starting configuration of U – the 

beginning of the universe) by running the system backwards on the basis of  itself.  
 
 
2.3. Universal Computation 
 

MoR  is computation-universal: our discrete universe U can host universal Turing machines 
(UTM) capable of universal computation. A constructive proof of this can be found in the 
iLabs book [forthcoming], where it is shown that each primitive of computation of a 
conventional UTM, namely (a) the storage, (b) transmission, and (c) processing of signals via 

a functionally complete set of logical gates, can be emulated by patterns produced via in 
the relevant cellular automaton. 
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Specifically: by implementing, each point <i, j> in the lattice constituting our discrete 
universe performs the double function of signal storage and transmission, so that any chain 
of adjacent cells works as a wire along which bits of information can move.  
 
Additionally, each cell is itself a universal logical gate, precisely insofar as it is a locus for the 
transmission and redirection of signals, by implementing the functionally complete set 
{AND, OR}, and also the FAN-OUT of signals (again: see our [forthcoming] book for details).  
 

Calling0 the vector expressing the initial configuration of U (the ordered w-tuple of the 
states of each of the w atoms in the grid at the beginning of the universe), the evolution of 

U is prescribed by  (with the corresponding global rule ). And such an evolution can 
produce UTMs, and so implement any finite algorithm and evaluate any computable claim.  
 
Since our discrete universe can host UTMs, its evolution is unpredictable in an exact sense: 
given the Halting Theorem, there is no general algorithm capable of predicting whether a 
given UTM will halt after n steps given a certain input. So there is no computational short 
path to predict the evolution of U: you can only sit back and look. 
 
 
3. MoR as concepts 
 
To think of our MsoR as triples <perception, thought, action> can sound, at first, as a kind of 
“semantic animism”. However, MsoR can recapture the general notion of operator, to which 
most mathematical concepts can be reduced. The mathematics of the MsoR is a 
“mathematics of thought” insofar as it provides a formal, mathematically respectable way 
to make many cognitive notions precise. The very notion of concept can be dealt with 
satisfactorily via the theory of MsoR.  
 
The nature of concepts has been the subject of philosophical disputes for some two 
thousand years: concepts have been sometimes reduced to physical or mental entities, 
sometimes elevated to the status Platonic ideas, or Fregean Sinne, etc. iLabs believe that 
concepts just are MsoR: rules effectively mapping a given signal or perception or input to an 
output or action following an internal processing activity, or thought. Or, more modestly: by 
accepting to conventionally identify the traditional notion of concept with the one of MoR, 
and by formally developing the latter, we can gain insight on the former. MsoR are 
“concepts at work”: they fulfil the theoretical roles assigned to concepts, and provide 
precise physical-informational realizers for them. 
 
Treating MsoR as operators allowed iLabs to import in the mathematics of MsoR the 
traditional theory of computable functions. In the following, we provide some appetizers of 
the full-fledged theory. 
 
 
3.1. Equivalent MoR 
 

MsoR have clearly spelled equivalence conditions. Let   be a generic equivalence relation 
determining a partition of the set of all MsoR into equivalence classes. We can introduce 
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criteria or conditions of equivalence between MsoR via axioms instantiating the schematic 
form:  
 

(EC) ([x/f] [x/g])  f  g 
 

 being our chosen condition. Two given MsoR f and g can be taken as equivalent under the 

relevant  if they both satisfy the chosen .  
 
A minimal condition on any equivalence relation on MsoR (ME) is the following. In order for 

f and g to be minimally equivalent (f 0 g), it is necessary that they share the same set of 

perceptions and actions. The sufficient condition for f 0 g is that they that map the same 
perceptions or inputs to the same actions or outputs: 
 

Given any two f: A B, and g: C  D, if: 
 
(a) A = C and B = D, 
(b) For any input x1, x2, …, xn , f and g give the same output y, 
 

Then, f 0 g. 
 
(ME) is still a week criterion, not including the time factor. A temporally qualified 

equivalence, 1 , will add to (a) and (b) the following clause: 
 
(c) … And output y is produced by f and g after the same number n of time units, 
 

Then, f 1 g. 
 
Stricter equivalences can be obtained by adding further clauses. We can capture procedural 

isomorphisms between MsoR: now we want f and g to be equivalent (f 2 g) iff they “do the 
same things”, not only “by employing the same amount of time”, but also “via isomorphic 
thoughts”, that is, via computational procedures, Pf and Pg respectively, such that there 
exists an isomorphism i between Pf and Pg. Hence, we need a fourth clause with the 
following form:  
 
 
(d) … And output y is produced by f and g via two computational sequences Pf and Pg, 

such that i(Pf, Pg), 
 

Then, f 2 g. 
 
A good mathematical characterization of i is provided in the iLabs [forthcoming] book by 
putting the computations performed by a set of recursive MsoR in canonical form, and by 
arithmetizing them via standard encoding procedures: the required i is then defined on the 
relevant numeric codes. 
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4. Recursive MoR, Meta-Models 
 
Intuitively, a recursive MoR is one that “refers to itself” in its very definition. Slightly more 
precisely: a recursive MoR is such that its actions or outputs given certain perceptions or 
inputs are determined by the output of that very MoR with respect to simpler inputs or 
perceptions: what a recursive MoR does given some more complex perceptions depends on 
what it does, or would do, for simpler ones (and, as shown in detail in our book, also 
“simpler” can be characterized mathematically in a precise way). Recursive MsoR can 
therefore be introduced via standard recursive definitions: the operator in the definiendum 
recurs in the definiens.  
 
By fully recapturing the theory of recursive operators, the mathematics of the MsoR allowed 
iLabs to define the key notion of meta-model. Informally, a meta-model is simply a model of 
reference capable of perceiving other models of reference and of operating on them. 
Technically, this has been achieved by having MsoR themselves encoded as states of the 
cells inhabiting our digital universe U: a meta-model can then take as inputs the codes of the 
MsoR it perceives.  
 
By embedding Kleene’s (Strong) Recursion Theorem in the theory of MsoR, it was then 
proved that there can be a universal MoR, capable of emulating the thoughts of any 
recursive MoR. This is a (partial) MoR with the following form: 
 
 univ(e, <x1, …, xn>).  
 
Given a recursive n-ary MoR  f(x1, …, xn) with code e, that is, [e]n(x1, …, xn), univ takes as 
inputs the code of f and (the code for) its input, and provides as output the one f or [e]n 
would give: 
 

f(x1, …, xn)  [e]n(x1, …, xn)  univ(e, <x1, …, xn>). 
 
(again, details can be found in our book). univ obviously corresponds to a UTM and, given 
the results presented in Section 2, it can be implemented in our digital universe U. 
 
 
5. Recursive Self-Reference and Beyond 
 
Recursive self-reference takes place when a MoR not only refers to itself, but is aware of 
such a self-reference. A system implementing a self-referentially recursive MoR can 
therefore be aware of what it does via that very MoR.  
 
Again, this is not semantic animism. For such expressions as “being aware” can be given a 
precise mathematical meaning. Much research at iLabs is guided by the persuasion that 
recursive self-reference is at the basis of what people ordinarily call “consciousness”: a key 
difference between conscious thoughts and any other computational procedure is that our 
mind, as (self-)conscious, can think about and have a viewpoint on itself (albeit with 
arguably limited powers to operate on its own source code). If Artificial Intelligence is to be 
real, this will be achieved by means of recursive self-reference – or this is our bet. 
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As shown in our book, the Recursion Theorems, applied to our recursive MsoR, guarantee 
that we can define partial MsoR which are recursively self-referential, for they include their 
own code in their recursive definition. These are simply classical fixed-point definitions. Since 
numeric codes are perceptions taken as inputs by (meta-)models of reference, which can 
also emulate the thought procedures performed by the encoded MsoR, recursive self-
referential MsoR can perceive themselves in a precise mathematical fashion, and represent 
the computational procedure in which they consist within themselves.  
 
 
 


